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Short questions

1. Quantum States.

a) State the three properties an operator ρ must satisfy in order to be a density

operator. Deduce from these properties the conditions under which the operator

ρ =
∑
n

pn|ψn⟩⟨ψn|

is a density operator, where the set of states {|ψn}} are orthonormal.

(3 marks)

Properties: ρ ≥ 0,Tr(ρ) = 1, ρ = ρ† (the last one is automatically fulfilled if its

positive).

Thus we need pn > 0∀n,
∑

n pn = 1.

b) Explain in terms of a density operator ρ the meaning of the terms pure state and

mixed state. Explain how Tr(ρ2) may be used to discriminate between pure and mixed

states.

(3 marks)

A pure state is a density matrix that has only one non zero eigenvalue. A mixed state

can have more than one non-zero eigenvalue. Thus given that
∑
pn = 1, Tr ρ2 = 1 iff

ρ is pure.

c) A composite system consisting of components A, B has Hilbert space HA⊗HB and

its state is

|ψ⟩ =
∑
n

αn|an⟩ ⊗ |bn⟩,

where {|an}} and {|bn}} are orthonormal sets of states. Compute ρA, the reduced

density operator of system A obtained by tracing over B. Compute ρB, defined similarly.

Hence show that:

Tr(ρ2A) = Tr(ρ2B)

(4 marks)

We can easily check that

TrA |ψ⟩⟨ψ| =
∑

α2
n |an⟩⟨an| (1)

TrB |ψ⟩⟨ψ| =
∑

α2
n |bn⟩⟨bn| (2)

(3)

Then trivially Tr ρ2A = Tr ρ2B

2



2. Fermions and Bosons.

a) Explain the difference between Bosonic and Fermionic states.

(3 marks)

Fermionic states have antisymmetric wave-functions, while bosonic ones have symmet-

ric wave-functions (under particle permutation).

b) Consider a three particle state where each particle can be in one of the three states

|a⟩, |b⟩, |c⟩. Write down the allowed states of the system if these particles are i. Bosons

and ii. Fermions.

(6 marks)

If all the particles are indistinguishable from each other, only symmetric for bosons

and anti-symmetric for fermion states will work. This can be readily done by using

the Slatter determinant (antisymmetric) and the permanent (symmetric).)

This is the Slatter determinant

ψabc(1, 2, 3) =
1√
3!

∣∣∣∣∣∣
ψa(1) ψb(1) ψc(1)

ψa(2) ψb(2) ψc(2)

ψa(3) ψb(3) ψc(3)

∣∣∣∣∣∣
And the Permanent

ψabc(1, 2, 3) =
1√
3!

ψa(1) ψb(1) ψc(1)

ψa(2) ψb(2) ψc(2)

ψa(3) ψb(3) ψc(3)

 =ψa(1)ψb(2)ψc(3) + ψa(1)ψb(3)ψc(2)+

(4)

+ ψa(2)ψb(1)ψc(3) + ψa(2)ψb(3)ψc(1)+

(5)

+ ψa(3)ψb(1)ψc(2) + ψa(3)ψb(2)ψc(1)

(6)

Equivalently you can write ψa(x)ψb(y)ψc(z) = |x, y, z⟩. You can look at section 10.3

of the Full Notes for further explanation.

3. Symmetry

a) Write down the Cayley table for the permutation group S3?
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(4 marks)

◦ e (12) (13) (23) (123) (132)

e e (12) (13) (23) (123) (132)

(12) (12) e (132) (123) (13) (23)

(13) (13) (123) e (132) (23) (12)

(23) (23) (132) (123) e (12) (13)

(123) (123) (13) (23) (12) (132) e

(132) (132) (23) (12) (13) e (123)

b) Describe a physical systems that obeys this symmetry. Write down a representation

for the S3 group that implements the symmetry transformations of this system.

(3 marks)

An equilateral triangle. An example of the representation is the one we have treated

in class of the C3v group (see notes/problem sheets) as they are isomorphic.

c) What are the conjugacy classes of S3? Write down the corresponding character

table.

(4 marks)

Equivalently, this are the same as in the C3v group (i.e., see the notes).

4. Perturbation Theory.

Consider a Hamiltonian of the form :

Ĥ = Ĥ0 + λV̂ (7)

with :

Ĥ0 = ϵ1 |1⟩ ⟨1|+ ϵ2 |2⟩ ⟨2| et V̂ = V12 |1⟩ ⟨2|+ V21 |2⟩ ⟨1| (8)

where |1⟩ and |2⟩ are the eigenstates of Ĥ0 associated respectively with the eigenvalues

ϵ1 and ϵ2. We assume that ∆ ≡ ϵ2 − ϵ1 > 0 and that V12 and V21 are real.

a) Calculate the exact spectrum of the Hamiltonian as well as its eigenstates.

(5 marks)
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The eigenvectors are

v1 =

 −
√

4λV12λV21 + (ϵ1− ϵ2)2 + ϵ1 − ϵ2

λV21

√∣∣∣∣−ϵ1+ϵ2+
√

(ϵ1−ϵ2)2+4λV12λV21

λV21

∣∣∣∣2 + 4

,
2√∣∣∣∣−ϵ1+ϵ2+

√
(ϵ1−ϵ2)2+4λV12λV21

λV21

∣∣∣∣2 + 4


(9)

v2 =


√

4λV12λV21 + (ϵ1 − ϵ2)2 + ϵ1 − ϵ2

λV21

√∣∣∣∣ ϵ1−ϵ2+
√

(ϵ1−ϵ2)2+4λV12λV21

λV21

∣∣∣∣2 + 4

,
2√∣∣∣∣ ϵ1−ϵ2+

√
(ϵ1−ϵ2)2+4λV12λV21

V21

∣∣∣∣2 + 4


(10)

b) Using first-order perturbation theory, find the eigenstates and compare with the

exact result.

(6 marks)

∣∣1(1)〉 = |1⟩+ λV12
ϵ1 − ϵ2

|2⟩ (11)∣∣2(1)〉 = |2⟩ − V21λ

ϵ1 − ϵ2
|1⟩ (12)

5. Decoherence.

Consider a composite system that is prepared in the initial state |ψ⟩ =
∑

j cj|Ej⟩A ⊗
|ϕ⟩B and evolves under a Hamiltonian HAB =

∑
j |Ej⟩⟨Ej|A ⊗H

(j)
B for time t.

a) Find an expression for the reduced states ρA(t) and ρB(t) of systems A and B as a

function of time.

(4 marks)

ρB =
∑
j

|cj|2e−itH
(j)
B |ϕ⟩⟨ϕ| eitH

(j)
B (13)

ρA =
∑
j,k

cjc
∗
k |Ej⟩⟨Ek| ⟨ϕ| eitH

(k)
B e−itH

(j)
B |ϕ⟩ (14)

b) Under what circumstances do A and B remain pure for all times?

(3 marks)

If H
(j)
B = H

(k)
B ∀k, j.
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c) Under what circumstances does ρA(t) become approximately diagonal in the basis

{|Ej⟩}?

(2 marks)

If eitH
(j)
B |ϕ⟩ =

∣∣ϕ(j)
〉
,then we want to have

〈
ϕ(j)
∣∣∣∣ϕ(k)

〉
= δj,k

6



Long questions

Please pick 2 questions to attempt - mark your choices clearly on the cover sheet.

Start a new sheet for each question.

Question A- Symmetry

1. Prove that the Pauli matrices and the identity (times ±1, ±i) form a (non-Abelian)

group with the matrix product.

(2 marks)

Solution:

A group has to have different properties

• Closeness: As we know σiσj = iϵijkσk, so the product of two Pauli matrices is a

Pauli matrix with a pre-factor of either ±1, ±i, so the product of each of two

possible matrices is in the set of our matrices.

• Associative: the matrix product is associative.

• Identity. the group includes the identity matrix.

• Inverse: σiσi = I, iσi ×−iσi = I, −I×−I = I. So the inverse of each matrix is in

the set of our matrices as well.

2. Prove that if R(g) is a representation of a group G then R(g) ⊗ R(g) is also a repre-

sentation of G.

(2 marks)

Solution:

This can be shown by just seeing that

R(g1)⊗R(g1) ·R(g2)⊗R(g2) = R(g1g2)⊗R(g1g2) (15)

3. Consider a unitary irreducible representation R(g) = Ug of group G. Use the Grand

Orthogonality Theorem to prove that

1

N

∑
g

UgXU
†
g =

1

d
Tr[X] I (16)
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where d = dim(X) and N is the order of the group.

(4 marks)

Solution:

Because this representation is irreducible, we can use the Grand Orthogonality theorem

and rewrite 1
N

∑
g UgXU

†
g as follows.

1

N

∑
g

UgXU
†
g =

1

N

∑
jklm

∑
g

[Ug]lmXmj[U
†
g ]jk|l⟩⟨k| (17)

=
1

d

∑
jklm

δlkδjmXmj|l⟩⟨k| (18)

=
1

d

∑
jk

Xjj|k⟩⟨k| (19)

=
1

d
Tr[X]I (20)

where na = d is the dimension of the vector space of the representation.

4. Use this result to (carefully!) explain why randomly applying either I (i.e, do nothing),

σx, σy, or σz (with equal probability) to any single qubit state on average results in

the maximally mixed state.

(3 marks)

Solution:

We can consider the group of Pauli matrices and identity with ±1 and ±i prefactors
that we had in the first part of the question and use the result in the third part to

write the average of X.

1

N

∑
g

UgρU
†
g =

1

N

(
4IρI + 4σxρσx + 4σyρσy + 4σzρσz

)
(21)

=
1

4

(
IρI + σxρσx + σyρσy + σzρσz

)
(22)

where N = 16 is the order of the group. So averaging over all elements of the group is

equal to randomly applying either I, σx, σy, or σz with probability 1
4
to any single qubit

state. And then from the previous part, we know that it is equal to the maximally

mixed state.
1

4

(
IρI + σxρσx + σyρσy + σzρσz

)
=

1

2
Tr[ρ]I =

1

2
I (23)

5. Consider now instead a completely reducible unitary representation Ug = ⊕xRx(g)

where the Rx(g) are dx dimensional unitary irreducible representations. It can be

shown that

⟨X⟩G =
1

N

∑
g

UgXU
†
g =

1

dx

⊕
x

Tr[XΠx]Πx . (24)
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What are Πx and dx in this expression?

(3 marks)

Solution: Πx are the projectors to the irreductible representations and dx are their

dimensions.

6. The above relation for averaging over representations of finite groups, Eq. (24), gen-

eralizes to averaging over compact Lie groups. In this case the finite average 1
N

∑
g

becomes a continuous integral over a uniform measure
∫
dµ(g) and we have:

⟨X⟩G :=

∫
G

dµ(g)UgXU
†
g =

1

dx

⊕
x

Tr[XΠx]Πx. (25)

Use this result to derive an explicit expression (i.e. compute the relevant dx and Πx) for

the averaged state ρ that results from randomly evolving ρ under the tensor product

of two random single qubit unitaries. That is, from apply U ⊗ U with U ∈ U(2), to

any two qubit state ρ, and then averaging:

⟨ρ⟩ =
∫
U(2)

dµU ⊗ U ρU † ⊗ U † . (26)

(5 marks)

Solution:

The easiest way to do this is to find something that commutes with this and that

we know how to diagonalise. Then we can use that basis. As we have seen in class

[U ⊗U, SWAP] = 0, therefore we can use the SWAP basis to find the projectors of the

irreductible representation.

The basis of the SWAP is the symmetric and antisymmetric spaces, i.e. with a

eigenvalue λ+ = 1

|ϕ0⟩ = |00⟩ (27)

|ϕ1⟩ = |11⟩ (28)

|ϕ2⟩ =
1√
2
(|10⟩+ |01⟩) (29)

(30)

and with eigenvalue λ− = −1

|ϕ3⟩ =
1√
2
(|10⟩ − |01⟩) (31)

the corresponding dimensions are d+ = 3, d− = 1. Therefore

1

3
Tr

[
2∑

i=0

|ϕi⟩⟨ϕi| ρ

]
2∑

i=0

|ϕi⟩⟨ϕi| ⊕ Tr[|ϕ3⟩⟨ϕ3| ρ] |ϕ3⟩⟨ϕ3| (32)
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7. Hence (or otherwise) compute the states that result from averaging (i.e, compute ⟨ρ⟩
in Eq. (26)) for the following states:

i. ρ = |Φ+⟩⟨Φ+| with |Φ+⟩ = 1√
2
(|00⟩+ |11⟩)

ii. ρ = |Ψ−⟩⟨Ψ−| with |Ψ−⟩ = 1√
2
(|01⟩ − |10⟩)

iii. ρ = |00⟩⟨00|

iv. An arbitrary tensor product two qubit state ρ ⊗ σ (hint: use the Bloch vector

representation).

(6 marks)

Solution:

i. This state is in the symmetric space, thus

⟨ρ⟩ = 1

3
(|ϕ0⟩⟨ϕ0|+ |ϕ1⟩⟨ϕ1|+ |ϕ2⟩⟨ϕ2|)

ii. This state is in the anti-symmetric space

⟨ρ⟩ = |ϕ3⟩⟨ϕ3|

iii. This state is in the symmetric space, thus

⟨ρ⟩ = 1

3
(|ϕ0⟩⟨ϕ0|+ |ϕ1⟩⟨ϕ1|+ |ϕ2⟩⟨ϕ2|)

iv. We denote ρ = 1
2
(I + nxσx + nyσy + nzσz), σ = 1

2
(I +mxσx +myσy +mzσz). Then

the average state will be

⟨ρ⊗ σ⟩ = 1

3
(|ϕ0⟩⟨ϕ0|+ |ϕ1⟩⟨ϕ1|+ |ϕ2⟩⟨ϕ2|)

1

4

(√
2mxnx +

√
2myny + 2mznz + 2

)
+ |ϕ3⟩⟨ϕ3|

i(mynx −mxny)

2
√
2
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Question B - Variational Principle

Consider the problem of a particle in one dimension, defined by the Hamiltonian

Ĥ = − ℏ2

2m

d2

dx2
+ V̂ (x) (33)

The potential V̂ (x) takes the form of a well, i.e., V̂ (x) ≤ 0 ∀x, and V̂ (x) → 0 as |x| → ∞.

Use the variational principle and the wavefunction ansatz ψ(x) = A exp(−λx2), which de-

pends on the variational parameter λ > 0, to show that there is always at least one bound

eigenstate, i.e., with eigenenergy E0 < 0. In particular,

1. State the variational principle and explain how it can be used to estimate the ground

state energy of a Hamiltonian H.

(3 marks)

2. Calculate the normalization factor A.

(4 marks)

3. Calculate ⟨ψ|T̂ (x)|ψ⟩ = ⟨ψ|
(
− ℏ2

2m
d2

dx2

)
|ψ⟩.

(6 marks)

4. We denote I(λ) = ⟨ψ|V̂ (x)|ψ⟩. So ⟨ψ|Ĥ|ψ⟩ = ⟨ψ|T̂ (x)|ψ⟩ + I(λ). Explicitly write

the condition that minimizes the expectation of energy ⟨ψ|Ĥ|ψ⟩. Use the resulting

relation to derive an expression for I(λ). Use this result in the expression for ⟨ψ|Ĥ|ψ⟩
and demonstrate that we always have ⟨ψ|Ĥ|ψ⟩ < 0.

(9 marks)

5. Explain how the variational principle can be used to find an estimate of the energy

of the first excited state of a Hamiltonian. Carefully state any limitations of this

approach.

(3 marks)

You may find the following integrals helpful:∫ +∞

−∞
dx exp

(
−x2

)
=

√
π∫ ∞

−∞
dxx2e−αx2

=
1

2α

√
π

α

Question B - Variational Principle: Solution
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1. The variational principle consists of the following inequality

E0 ≤
⟨ψ|H|ψ⟩
⟨ψ|ψ⟩

, (34)

where E0 is the ground state energy and |ψ⟩ is any wavefunction (in the appropriate

Hilbert space).

In practice, one can select a wavefunction ansatz (or trial wavefunction) ψ(θ), where θ

is, in general, a vector of parameters. Though in this problem, we restrict ourselves to a

single parameter θ = λ. The goal is then to minimize E(θ) = ⟨ψ(θ)|H|ψ(θ)⟩/⟨ψ(θ)|ψ(θ)⟩.
In the rare cases where E(θ) can be calculated analytically, it suffices to take the gradi-

ent of E(θ) with respect to θ to find the minima. If instead E(θ) can only be calculated

numerically, the parameters θ can be systematically varied to incrementally lower the

energy estimate E(θ). In both cases, the minimum value of the energy E(θmin) found

will serve as an upper bound on the true ground state energy, that is,

E0 ≤ E(θmin). (35)

2. The normalization factor A is obtained by imposing

1 =

∫ ∞

−∞
dx|ψ(x)|2 =

∫ ∞

−∞
dx|A|2e−2λx2

= A2

√
π

2λ
, (36)

using the known Gaussian integral result. So we find that

A =

(
2λ

π

)1/4

. (37)

3. To compute ⟨ψ|T (x)|ψ⟩, we will need the second derivative of ψ(x) with respect to x,

so we need

d

dx
e−λx2

= −2λxe−λx2

, (38)

d2

dx2
e−λx2

= (−2λ+ 4λ2x2)e−λx2

. (39)

To proceed, we simply add a completeness relation, substitute the second derivative

result from above, and use the Gaussian integrals provided in the question statement,

⟨ψ|T (x)|ψ⟩ =
∫ ∞

−∞
dxψ∗(x)

(
− ℏ2

2m

d2

dx2

)
ψ(x) (40)

= − ℏ2

2m

√
2λ

π

∫ ∞

−∞
dx(−2λ+ 4λ2x2)e−2λx2

(41)

= − ℏ2

2m

√
2λ

π

(
−2λ

√
π

2λ
+ 4λ2

1

4λ

√
π

2λ

)
(42)

=
λℏ2

2m
. (43)
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4. Now we need to take care of the potential term I(λ) := ⟨ψ|V (x̂)|ψ⟩. Similarly as for

the kinetic term, we simply have to add a completeness relation. Here is the calculation

one step at a time

I(λ) =

∫ ∞

−∞
dx⟨ψ|V (x̂)|x⟩⟨x|ψ⟩ (44)

=

∫ ∞

−∞
dx⟨ψ|x⟩V (x)⟨x|ψ⟩ (45)

=

∫ ∞

−∞
dxψ∗(x)V (x)ψ(x) (46)

=

√
2λ

π

∫ ∞

−∞
dxe−2λx2

V (x). (47)

Since we are not provided an explicit form for the potential V (x), we cannot proceed

further.

The condition that minimizes the expectation value of the energy is

min
λ

⟨ψ(λ)|H|ψ(λ)⟩ = min
λ

(
λℏ2

2m
+

√
2λ

π

∫ ∞

−∞
dxe−2λx2

V (x)

)
. (48)

By assumption λ > 0 and V (x) ≤ 0, so the kinetic expectation value is strictly positive

while the potential expectation value is less than or equal to 0.

5. Provided we know the exact form of the ground state, call it |ψ0⟩, and we take any

wavefunction |Ψ⟩ orthogonal to the ground state, that is ⟨Ψ|ψ0⟩ = 0, then the following

variational principle holds

E1 ≤
⟨Ψ|H|Ψ⟩
⟨Ψ|Ψ⟩

, (49)

where E1 is the energy of the first excited state. The main limitation of this approach

is that the ground state should be known. Else we cannot ensure that the wavefunction

ansatz we pick is orthogonal to it.

Question C - Entanglement

A quantum system is made of 2 sub-systems and is defined in the Hilbert spaceH = H1⊗H2,

where H1 and H2 are the spaces where the 2 sub-systems ares defined. The states of such a

system is said to be separable if we can write its density matrix as

ρs =
∑
k

pkρ
(1)
k ⊗ ρ

(2)
k , (50)

with
∑

k pk = 1, pk ≥ 0, and ρ
(1)
k and ρ

(2)
k being density matrices in spaces H1 and H2

respectively. A system that cannot be described by a matrix of the form of Eq. (50) is a

system with quantum entanglement. (Recall that a density matrix must satisfy the following

properties: (i) Tr(ρ) = 1; (ii) ρ = ρ†; (iii) is positive semi-definite.)

13



1. Show that, for such a separable state, the mean value of an arbitrary observable quan-

tity A1 of subsystem 1, does not depend on subsystem 2. That is, does not depend on

the ρ
(2)
k .

(4 marks)

Three players (called Alice, Bob and Charlie) each own a qubit (a quantum system defined

in a Hilbert space of dimension 2, with basis {|0⟩ , |1⟩}). The three qubit system is in state

|ψGHZ⟩ = 1√
2
(|000⟩ + |111⟩) (For the rest of the problem, the notation |ijk . . .⟩, i indicates

the qubit state of Alice, j that of Bob, etc.). Alice lives in another galaxy, Bob and Charlie

have no knowledge of the total system state.

2. Calculate the mixed state density matrix that describes the subsystem formed by the

qubits of Bob and Charlie (In basis {|00⟩ , |01⟩ , |10⟩ , |11⟩}). (2 marks)

3. Show that this matrix is separable. (1 marks)

We now consider the partial transpose operation (not the partial trace). Consider a density

matrix ρ describing the state of a system made up of two sub-systems. We indicate with

{|i⟩ , |j⟩ , . . .} the states of the basis of the first sub-system; with {|µ⟩ , |ν⟩ , . . .} the basis of

the second sub-system; and with {|iµ⟩ , |iν⟩ , |jµ⟩ , |jν⟩ , . . .} the total system. If the matrix

ρ has elements ρiµ,jν = ⟨iµ|ρ|jν⟩, then the elements of the density matrix ρTP , obtained by

partial transpose wrt to the subsystem, are defined by (ρTP )iµ,jν = ⟨iν|ρ|jµ⟩.

4. Show that for a separable state of two subsystems, of the form (50), the partial trans-

pose ρTP
s with respect to one of the two subsystems is still a valid density matrix. In

other words, it still satisfies the three properties (i), (ii), and (iii) mentioned above.

(4 marks)

5. Hence explain how the partial transpose can be used to determine whether or not a

mixed state is entangled.

(4 marks)

Four actors, named A, B, C, and D (or Alice, Bob, Charlie, and David), each have a quantum

bit. The system of the four quantum bits is in the state |ψS⟩ = 1
2
(|0000⟩+ |0011⟩+ |1100⟩ −

|1111⟩). As before, Alice lives in another galaxy. Calculate the density matrix associated

with the mixed state that describes the subsystem formed by the quantum bits of Bob,

Charlie, and David (in the basis {|000⟩ , |001⟩ , |010⟩ , . . . , |111⟩}).

6. Demonstrate that the mixed state shared by Bob, Charlie, and David is an entangled

state. (10 marks)
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Question C - Entanglement: Solution

1. Consider operator A1 : Ĥ1 7→ Ĥ1. In the global hilbert space Ĥ, this operator becomes

Â = Â1 ⊗ 12. We thus have〈
Â
〉
= Tr

(
Â1ρ̂

)
=
∑
k

pkTr
(
Â1ρ̂

(1)
k ⊗ ρ̂

(2)
k

)
=
∑
k

pkTr
(
Â1ρ̂

(1)
k

)
Tr
(
ρ̂
(2)
k

)
=
∑
k

pkTr
(
Â1ρ̂

(1)
k

)
since Tr

(
ρ̂
(2)
k

)
= 1 for a density matrix. We have thus shown that

〈
Â
〉
is independent

of ρ̂
(2)
k

2. The density matrix at pure states |ψGHZ⟩ is built as

ρ̂0 = |ψGHZ⟩ ⟨ψGHZ|

=
1

2
(|000⟩+ |111⟩) (⟨000|+ ⟨111|)

The density matrix for subsystems B and C is given by the partial traces of ρ̂0 on the

Alice system

ρ̂ = ⟨0A| ρ̂0 |0A⟩+ ⟨1A| ρ̂0 |1A⟩

=
1

2
(|00⟩ ⟨00|+ |11⟩ ⟨11|)

=
1

2


1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1


3. We note that we can write

ρ̂ =
1

2

(
ρ̂
(1)
0 ⊗ ρ̂

(2)
0 + ρ̂

(1)
1 ⊗ ρ̂

(2)
1

)
(51)

where ρ̂
(j)
0 = |0⟩ ⟨0| and ρ̂(j)1 = |1⟩ ⟨1| are density matrices. By definition, the state is

separable.
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4. For a separable density matrix ρ̂S, the definition of partial transposition is simply given

by

ρ̂TB
S =

∑
k

ρ̂
(1)
k ⊗

(
ρ̂
(2)
k

)T
(52)

but the (ρ̂
(2)
k )T are valid density matrices, that is:

Tr
(
ρ̂
(2)
k

)T
= Tr

(
ρ̂
(2)
k

)
= 1((

ρ̂
(2)
k

)T)†

=
(
ρ̂
(2)
k

)T
(
ρ̂
(2)
k

)T
and ρ̂

(2)
k have the same eigenvalues

thus ρ̂TB
S is still a separable density matrix .

5. Using the result from above we can state that if ρ̂ is separable, the partial transpose ρ̂TB

is a valid density matrix. In particular, all eigenvalues of ρ̂TB have to be non-negative.

Conversely, if at least one eigenvalue of ρ̂TB is negative, the state ρ̂ must be entangled.

This test (called the PPT criterion) is a necessary criterion for any separable state,

however it is not sufficient (there are entangled states that also fulfil the criterion).

6. Like before, the pure state of A, B, C and D is described by ρ̂0 = |ψS⟩ ⟨ψS|. We

compute the partial trace relative to A

ρ̂ = ⟨0A| ρ̂0 |0A⟩+ ⟨1A| ρ̂0 |1A⟩

=
1

4
(|000⟩ ⟨000|+ |000⟩ ⟨011|+ |011⟩ ⟨000|+ |011⟩ ⟨011|)

+
1

4
(|100⟩ ⟨100| − |100⟩ ⟨111| − |111⟩ ⟨100|+ |111⟩ ⟨011|)

=
1

4



1 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 0 1 0 0 0 0

0 0 0 0 1 0 0 −1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 −1 0 0 1


To show that it is a mixed state, we compute the partial transpose relative to C. We

see that ρ̂TC
000,011 = ρ̂001,010 and ρ̂TC

001,010 = ρ̂000,011 and same for the 2e diagonal blocks.
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Thus

ρ̂TC =
1

4



1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 −1 0

0 0 0 0 0 −1 0 0

0 0 0 0 0 0 0 1


(53)

We can easily calculate the eigenvalues of this block-diagonal structure. For both

blocks, the secular equation is λ2 − 1 = 0, which gives 2 pairs of eigenvalues λ = ±1.

The matrix ρ̂TC thus has 2 negative eigenvalues, and therefore, it is not a valid density

matrix. According to the condition established earlier, we are in a case of a non-

separable state and hence, entangled.
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