e You must answer ALL questions in the short answer section.

e You must answer precisely 2 (out of 3) of the questions in the long answer section.

Please mark clearly which two you have answered below and start a new sheet for
each of the long answer questions.

e Write your solutions in the indicated space. Scrap paper will not be corrected.

e You are reminded that Examiners attach great importance to legibility,
accuracy and clarity of expression.

e A simple calculator (without internet access) is allowed.
e Please write your name on the top right corner of each sheet you use.

e Good luck! Enjoy!
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Short questions

1. Quantum States.

a) State the three properties an operator p must satisfy in order to be a density
operator. Deduce from these properties the conditions under which the operator

P = an’¢n><wn’

is a density operator, where the set of states {|¢,}} are orthonormal.
(3 marks)
Properties: p > 0,Tr(p) = 1,p = p' (the last one is automatically fulfilled if its

positive).
Thus we need p, > 0¥n, > p, = 1.

b) Explain in terms of a density operator p the meaning of the terms pure state and
mized state. Explain how Tr(p?) may be used to discriminate between pure and mixed
states.

(3 marks)

A pure state is a density matrix that has only one non zero eigenvalue. A mixed state
can have more than one non-zero eigenvalue. Thus given that > p, = 1, Trp? = 1 iff
p is pure.

¢) A composite system consisting of components A, B has Hilbert space H ® Hp and
its state is

) =" aulan) © [ba),

where {]a,}} and {|b,}} are orthonormal sets of states. Compute p,, the reduced
density operator of system A obtained by tracing over B. Compute pg, defined similarly.
Hence show that:

Tr(p%) = Tr(pp)

(4 marks)
We can easily check that

Tea ] = 3 o Jana| 1)
Teg [0)e] = 3 a2 b, 2)

Then trivially Tr p% = Tr p%



2. Fermions and Bosons.
a) Explain the difference between Bosonic and Fermionic states.
(3 marks)

Fermionic states have antisymmetric wave-functions, while bosonic ones have symmet-
ric wave-functions (under particle permutation).

b) Consider a three particle state where each particle can be in one of the three states
la), |b), |c). Write down the allowed states of the system if these particles are i. Bosons
and ii. Fermions.

(6 marks)

If all the particles are indistinguishable from each other, only symmetric for bosons
and anti-symmetric for fermion states will work. This can be readily done by using
the Slatter determinant (antisymmetric) and the permanent (symmetric).)

This is the Slatter determinant
1 ¢a(1) ¢b(1) 77ZJC(1>
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+ 1a(2)Y6(1)1e(3) 4 1a(2)85(3) e (1) +

(5)
+ wa(?))wb(1>z/}c(2) + %(3)%(2)%(1)

(6)

Equivalently you can write 1,(x)p(y)e(z) = |z,y,2). You can look at section 10.3
of the Full Notes for further explanation.

3. Symmetry
a) Write down the Cayley table for the permutation group S3?



(4 marks)

° e (12) (13) (23) (123) (132)
e | e (12) (13) (23) (123) (132)
(12) | (12) e (132) (123) (13) (23

23) (132) (123) e  (12)
(123) | (123) (13) (23) (12) (132) e
(132) | (132) (23) (12) (13) e  (123)

b) Describe a physical systems that obeys this symmetry. Write down a representation
for the S3 group that implements the symmetry transformations of this system.

(3 marks)

An equilateral triangle. An example of the representation is the one we have treated
in class of the C3v group (see notes/problem sheets) as they are isomorphic.

c) What are the conjugacy classes of S37 Write down the corresponding character
table.

(4 marks)

Equivalently, this are the same as in the C3v group (i.e., see the notes).

. Perturbation Theory.

Counsider a Hamiltonian of the form :
H=Hy+\V (7)
with :
Hy=e |1) (1| 4+ & |2) (2] et V =Vip|1) (2] + Vo |2) (1] (8)

where |1) and |2) are the eigenstates of Hy associated respectively with the eigenvalues
€1 and e5. We assume that A = e5 — ¢; > 0 and that Vi3 and V5, are real.

a) Calculate the exact spectrum of the Hamiltonian as well as its eigenstates.

(5 marks)



The eigenvectors are

—\/4)\‘/12)\‘/21 + (61 - 62)2 + €1 — €9 2
v = )
\V —e1 e/ (e1—€2)2+4AVI2 A Vo) ’ 4 —e1tea+y/(e1—€2)2+4AVia AVay ? 4
21 AVaq + AVay +
(9)
" \/4)\‘/12)\‘/21 + (61 — 62)2 + €1 — €2 2
2 pu—

2
€1 —€2+\/(61—62)2+4)\V12>\V21
Va1

€1 —62+\/(€1 —€2)2+4A\V12AVay
AV

+4

2 M)
)\Vm\/ +4 \/

b) Using first-order perturbation theory, find the eigenstates and compare with the
exact result.

(10)

(6 marks)
10y =1y + 212 (11)
€1 — €9
Vor A
oMy — 19y — 212 |1 12
[29) =12) - ——- 1) (12)
. Decoherence.

Consider a composite system that is prepared in the initial state ]1p> =2, ¢lE)a®
|¢) 5 and evolves under a Hamiltonian Hap = > _; |Ej)(Ejla ® Hg) for time t.

a) Find an expression for the reduced states p4(t) and pg(t) of systems A and B as a
function of time.

(4 marks)
pp =3 lejPe 5 |g) o] M (13)
J
. aH® @
pa=> cich |ENE] (6] M5 eitHE |g) (14)
7.k

b) Under what circumstances do A and B remain pure for all times?
(3 marks)
It HY = HYVE, 5.



¢) Under what circumstances does pa(t) become approximately diagonal in the basis
{1537

(2 marks)

If e*H5’ ¢) = |¢\)) ,then we want to have (¢\)|¢"M)) = §;,



Long questions

Please pick 2 questions to attempt - mark your choices clearly on the cover sheet.

Start a new sheet for each question.

Question A- Symmetry

1. Prove that the Pauli matrices and the identity (times 41, +i) form a (non-Abelian)
group with the matrix product.

(2 marks)
Solution:
A group has to have different properties
e Closeness: As we know 0,0; = i€;,0%, so the product of two Pauli matrices is a

Pauli matrix with a pre-factor of either +1, 44, so the product of each of two
possible matrices is in the set of our matrices.

e Associative: the matrix product is associative.
e Identity. the group includes the identity matrix.
e Inverse: 0,0; =1, i0; X —io; =1, —1 x —I = 1. So the inverse of each matrix is in
the set of our matrices as well.
2. Prove that if R(g) is a representation of a group G then R(g) ® R(g) is also a repre-
sentation of G.
(2 marks)
Solution:

This can be shown by just seeing that
R(g1) ® R(g1) - R(g2) ® R(g2) = R(g192) ® R(g192) (15)

3. Consider a unitary irreducible representation R(g) = U, of group G. Use the Grand
Orthogonality Theorem to prove that

1 1
~ > UXU] = S Te[X] 1 (16)
g



where d = dim(X) and N is the order of the group.
(4 marks)
Solution:

Because this representation is irreducible, we can use the Grand Orthogonality theorem
and rewrite + > s Ug XU, 1 as follows.

§ S0 = 5 5 S U XUl 0
= 3 2wt X4 (18
= 32 Xalh) (19)
B le;f[X” (20)

where n, = d is the dimension of the vector space of the representation.

. Use this result to (carefully!) explain why randomly applying either I (i.e, do nothing),
0, Oy, O 0, (with equal probability) to any single qubit state on average results in
the maximally mixed state.

(3 marks)
Solution:

We can consider the group of Pauli matrices and identity with +1 and +¢ prefactors
that we had in the first part of the question and use the result in the third part to
write the average of X.

1 1
3 2 UspU) =~ (Apl + 40.p0 + doypoy + Ao po.) (21)
g
1
=1 (]pI + 0.p0, + oypo, + Uzpffz) (22)

where N = 16 is the order of the group. So averaging over all elements of the group is
equal to randomly applying either I, o,, o, or o, with probability % to any single qubit
state. And then from the previous part, we know that it is equal to the maximally
mixed state. 1

1
Z([p[ T+ 0zp0; + Oypoy + Uzpaz) = §Tr[p][ = 51 (23)

. Consider now instead a completely reducible unitary representation U, = @,R,(g)
where the R,(g) are d, dimensional unitary irreducible representations. It can be
shown that

1 1
(X)e =+ > U XU = z D e[ XL 1L, . (24)
g x
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What are II, and d, in this expression?
(3 marks)

Solution: II, are the projectors to the irreductible representations and d, are their
dimensions.

. The above relation for averaging over representations of finite groups, Eq. (24), gen-
eralizes to averaging over compact Lie groups. In this case the finite average % > g
becomes a continuous integral over a uniform measure [ du(g) and we have:

(X)g = /Gdu(g)UgXUgT = d%@Tr[XHm]Hﬁ. (25)

Use this result to derive an explicit expression (i.e. compute the relevant d, and II,.) for
the averaged state p that results from randomly evolving p under the tensor product
of two random single qubit unitaries. That is, from apply U ® U with U € U(2), to
any two qubit state p, and then averaging:

(p)z/U@)duU@UpUT@UT. (26)

(5 marks)
Solution:

The easiest way to do this is to find something that commutes with this and that
we know how to diagonalise. Then we can use that basis. As we have seen in class
[U @ U, SWAP] = 0, therefore we can use the SWAP basis to find the projectors of the
irreductible representation.

The basis of the SW AP is the symmetric and antisymmetric spaces, i.e. with a
eigenvalue A\, =1

|¢0) =100) (27)
1) =[11) (28)
1
|92) :Emm +101)) (29)
(30)
and with eigenvalue \_ = —1
1
|¢3) ZE(HO) —[01)) (31)
the corresponding dimensions are dy = 3, d_ = 1. Therefore
1 2 2
gTr Z |9 Xl P] Z |9 )( @il © Tr[|ps) s p] |#3) @3] (32)
i=0 i=0

9



7. Hence (or otherwise) compute the states that result from averaging (i.e, compute (p)
in Eq. (26)) for the following states:

i p=[@F)(®F] with |@F) = —5(]00) + [11))
ii. p= |07 ) (W] with [T) = 55(|01) — [10))
iii. p = [00)(00|

iv. An arbitrary tensor product two qubit state p ® o (hint: use the Bloch vector
representation).

(6 marks)
Solution:

i. This state is in the symmetric space, thus

(10X @0l + [@1Xd1] + |$2)2])

Wl =

() =
ii. This state is in the anti-symmetric space

(p) = |3 ) b3l

iii. This state is in the symmetric space, thus

(IdoX ol + @1 )(d1] + [d2)(2])

Wl

(p) =

iv. We denote p = %(I +ny0, +nyoy +1n,0,), 0 = %([ + myo, +myo, +m,o,). Then
the average state will be

(0 ) = 5 (19aldol + 101K + 10K 7 (VEmans +VBmyn + 2mn. +2)

+ |p3)( P3| !

(myng —mgny)

22
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Question B - Variational Principle

Consider the problem of a particle in one dimension, defined by the Hamiltonian

X B2 o2 .
H=-""_41V 33
2m dxz? + V(@) (33)
The potential V(z) takes the form of a well, i.e., V(z) <0 Va, and V(z) — 0 as |z| — oc.

Use the variational principle and the wavefunction ansatz v(x) = Aexp(—Az?), which de-
pends on the variational parameter A > 0, to show that there is always at least one bound
eigenstate, i.e., with eigenenergy Ey < 0. In particular,

1. State the variational principle and explain how it can be used to estimate the ground
state energy of a Hamiltonian H.

(3 marks)

2. Calculate the normalization factor A.

(4 marks)

3. Caleulate ([T (x)v) = (] (~ L4 ) 0).
(6 marks)

4. We denote I(\) = (p|V(z)|)). So (W|H[Y) = W|T(x)[v)) + I(N). Explicitly write
the condition that minimizes the expectation of energy (i)|H|). Use the resulting

relation to derive an expression for I(\). Use this result in the expression for (1)|H|¢)
and demonstrate that we always have (¢|H|¢) < 0.

(9 marks)

5. Explain how the variational principle can be used to find an estimate of the energy
of the first excited state of a Hamiltonian. Carefully state any limitations of this
approach.

(3 marks)

You may find the following integrals helpful:

/ " drexp(—a?) = V7

oo

& 1
/ dezle o = — T
_ 200\ «

oo

Question B - Variational Principle: Solution

11



1. The variational principle consists of the following inequality

) 5

T W)

where Ej is the ground state energy and |¢) is any wavefunction (in the appropriate
Hilbert space).

In practice, one can select a wavefunction ansatz (or trial wavefunction) ¢ (6), where 6
is, in general, a vector of parameters. Though in this problem, we restrict ourselves to a
single parameter § = . The goal is then to minimize E(0) = ((0)|H | (0))/{1(0)](0)).
In the rare cases where E(6) can be calculated analytically, it suffices to take the gradi-
ent of F(0) with respect to 6 to find the minima. If instead F(f) can only be calculated
numerically, the parameters 6 can be systematically varied to incrementally lower the
energy estimate F/(6). In both cases, the minimum value of the energy F(fyi,) found
will serve as an upper bound on the true ground state energy, that is,

2. The normalization factor A is obtained by imposing

1= [ delot)f = [ delape et — a7 (30)

[e.9]

using the known Gaussian integral result. So we find that

A (g)m. (37)

™

3. To compute (|T'(z)|¢), we will need the second derivative of ¢(x) with respect to z,

so we need
d 2 2
%e*’\’” = —2\ve (38)
d2 —Az? 2 2\ —Ax?
T3¢ = (—2X + 4 "z)e . (39)

To proceed, we simply add a completeness relation, substitute the second derivative
result from above, and use the Gaussian integrals provided in the question statement,

it = [ o) (g ) vt (40)

. 2m dx?

R [2) [ 2
=5 ?/ dz(—2X + 4\ 22?)e 2 (41)

R 2\ [ o1 /7
AR?
e 4

12



4. Now we need to take care of the potential term I(\) := (¢|V(Z)[¢). Similarly as for
the kinetic term, we simply have to add a completeness relation. Here is the calculation
one step at a time

1) = [ detlV @)l al) (44

[e.9]

= [ dstulnv @) el (45

[e.9]

- [ @ @vewe (40

= \/? / Z dre "V (). (47)

Since we are not provided an explicit form for the potential V' (z), we cannot proceed
further.

The condition that minimizes the expectation value of the energy is

min ()| 1 >>—mm<m 2 [ ey >> (49)

By assumption A > 0 and V' (z) < 0, so the kinetic expectation value is strictly positive
while the potential expectation value is less than or equal to 0.

5. Provided we know the exact form of the ground state, call it |1)g), and we take any
wavefunction |¥) orthogonal to the ground state, that is (¥|1) = 0, then the following
variational principle holds

(V| H[¥)
By < —F———,

(W]w)
where F is the energy of the first excited state. The main limitation of this approach

(49)

is that the ground state should be known. Else we cannot ensure that the wavefunction
ansatz we pick is orthogonal to it.

Question C - Entanglement

A quantum system is made of 2 sub-systems and is defined in the Hilbert space H = H; ®Ha,
where H; and H, are the spaces where the 2 sub-systems ares defined. The states of such a
system is said to be separable if we can write its density matrix as

=Y mer) @07 (50)
k

with >, pr = 1, pr > 0, and p,(cl) and p,(f) being density matrices in spaces H; and Hs
respectively. A system that cannot be described by a matrix of the form of Eq. (50) is a
system with quantum entanglement. (Recall that a density matrix must satisfy the following
properties: (i) Tr(p) = 1; (ii) p = pT; (iii) is positive semi-definite.)

13



1. Show that, for such a separable state, the mean value of an arbitrary observable quan-
tity A; of subsystem 1, does not depend on subsystem 2. That is, does not depend on

the p,(f).

(4 marks)

Three players (called Alice, Bob and Charlie) each own a qubit (a quantum system defined
in a Hilbert space of dimension 2, with basis {|0), |1)}). The three qubit system is in state
Yenz) = \%(\OO@ + |111)) (For the rest of the problem, the notation |ijk...), i indicates
the qubit state of Alice, j that of Bob, etc.). Alice lives in another galaxy, Bob and Charlie
have no knowledge of the total system state.

2. Calculate the mixed state density matrix that describes the subsystem formed by the
qubits of Bob and Charlie (In basis {|00), [01), [10), [11)}). (2 marks)

3. Show that this matrix is separable. (1 marks)

We now consider the partial transpose operation (not the partial trace). Consider a density
matrix p describing the state of a system made up of two sub-systems. We indicate with
{l2), 17), ...} the states of the basis of the first sub-system; with {|u), |v),...} the basis of
the second sub-system; and with {|iy) , |iv), [ju), [jv), ...} the total system. If the matrix
p has elements p;, i, = (iu|p|jv), then the elements of the density matrix p’7, obtained by
partial transpose wrt to the subsystem, are defined by (p™);, 5 = (iv|pliu).
4. Show that for a separable state of two subsystems, of the form (50), the partial trans-
pose plP with respect to one of the two subsystems is still a valid density matrix. In
other words, it still satisfies the three properties (i), (ii), and (iii) mentioned above.

(4 marks)

5. Hence explain how the partial transpose can be used to determine whether or not a
mixed state is entangled.

(4 marks)

Four actors, named A, B, C, and D (or Alice, Bob, Charlie, and David), each have a quantum
bit. The system of the four quantum bits is in the state [1g) = 3(|0000) +[0011) 4 [1100) —
|1111)). As before, Alice lives in another galaxy. Calculate the density matrix associated
with the mixed state that describes the subsystem formed by the quantum bits of Bob,
Charlie, and David (in the basis {|000), |001), |010),..., |111)}).

6. Demonstrate that the mixed state shared by Bob, Charlie, and David is an entangled
state. (10 marks)

14



Question C - Entanglement: Solution

1. Consider operator A : H, — H;. In the global hilbert space H, this operator becomes
A=A, ®1,. We thus have

(4) =1 (4)

=Y pTr (Alﬁfj) ® ;3,(3))
k

since Tr <[),(€2)> = 1 for a density matrix. We have thus shown that </1> is independent
of [),(f)

2. The density matrix at pure states |t)gnz) is built as

po = WGHZ> WGHZ’
= 2 (1000) + [111)) ((000] + (1]

The density matrix for subsystems B and C'is given by the partial traces of py on the
Alice system

p=1{04]po04) + (1] po|14)
— %(|00> (00] + [11) (11])

0 0

—_
S o O =
o O O O

0 0
0 0
0 1

3. We note that we can write
. 1/ ~(2 ~(1 (2
p=§(pé)®pé)+p§)®p§)> (51)

where p¥ = |0) (0] and p) = |1) (1] are density matrices. By definition, the state is
separable.

15



4. For a separable density matrix pg, the definition of partial transposition is simply given

by
ATB . Z ](€1)®<A(2 ) (52)

but the (pAl(f))T are valid density matrices, that is:
Tr (pA,(f)) =Tr (A(2)> 1
.|.
“@\7 O
((2)") = ()
(*”)T d A2 have th igenval
P and p,’ have the same eigenvalues

thus pr is still a separable density matrix .

5. Using the result from above we can state that if p is separable, the partial transpose p'2
is a valid density matrix. In particular, all eigenvalues of p72 have to be non-negative.
Conversely, if at least one eigenvalue of 77 is negative, the state p must be entangled.
This test (called the PPT criterion) is a necessary criterion for any separable state,
however it is not sufficient (there are entangled states that also fulfil the criterion).

6. Like before, the pure state of A, B, C' and D is described by py = |tg) (s|. We

compute the partial trace relative to A

p = (0] po104) + (La| po [14)
1
=~ (1000) (00| + |000) (01| + [011) (000] + [011) {011

i<'100> (100] — [100) (111] — [111) (100| + [111) (O11])
1 001 0 0O O
0000 O OO0 O
0000 O OO0 O
1 1 001 0 O0O0 O
4l 0000 1 00 —1
0000 O OO0 O
0000 O OO0 O
0000 -100 1

To show that it is a mixed state, we compute the partial transpose relative to C'. We
see that ﬁOTng = poo1,010 and ﬁoT§1,o1o = pooo,o11 and same for the 2¢ diagonal blocks.
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Thus

10000 0 0 0
00100 0 0 0
01000 0 0 0

. 1looo0o10 0 0 0

P“=3looo001 0 0 0 (53)
00000 0 —1 0
00000 1 0 0
00000 0 0 1

We can easily calculate the eigenvalues of this block-diagonal structure. For both
blocks, the secular equation is A> — 1 = 0, which gives 2 pairs of eigenvalues A\ = £1.
The matrix p’¢ thus has 2 negative eigenvalues, and therefore, it is not a valid density
matrix. According to the condition established earlier, we are in a case of a non-
separable state and hence, entangled.
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